What better way to start the new year than with a discussion of statistical graphics.
Your and my 2019 R goals
Here we go again, using a Twitter trend as blog fodder! Colin Faylaunched an inspiring movement by sharing his R goals of 2019.
Seeing the wood for the trees
Visualising “bigger data” In the blog post Criminal goings-on in a random forest, we used supervised machine learning to see how well we could predict crime in London. We began by rendering and exploring some of the many facets of the recorded crime summary data at London borough-level .
New Year's Resolutions 2019
A year back, a year ahead.
If you did not already know
Gradient Adversarial Training We propose gradient adversarial training, an auxiliary deep learning framework applicable to different machine learning problems. In gradient adversarial training, we leverage a prior belief that in many contexts, simultaneous gradient updates should be statistically indistinguishable from each other. We enforce this consistency using an auxiliary network that classifies the origin of the gradient tensor, and the main network serves as an adversary to the auxiliary network in addition to performing standard task-based training. We demonstrate gradient adversarial training for three different scenarios: (1) as a defense to adversarial examples we classify gradient tensors and tune them to be agnostic to the class of their corresponding example, (2) for knowledge distillation, we do binary classification of gradient tensors derived from the student or teacher network and tune the student gradient tensor to mimic the teacher’s gradient tensor; and (3) for multi-task learning we classify the gradient tensors derived from different task loss functions and tune them to be statistically indistinguishable. For each of the three scenarios we show the potential of gradient adversarial training procedure. Specifically, gradient adversarial training increases the robustness of a network to adversarial attacks, is able to better distill the knowledge from a teacher network to a student network compared to soft targets, and boosts multi-task learning by aligning the gradient tensors derived from the task specific loss functions. Overall, our experiments demonstrate that gradient tensors contain latent information about whatever tasks are being trained, and can support diverse machine learning problems when intelligently guided through adversarialization using a auxiliary network. …
Whats new on arXiv
Generic adaptation strategies for automated machine learning
If you did not already know
Deep Echo State Network (deepESN) The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions of recurrent layers, i.e. on the bias of depth in RNNs architectural design. In this paper, we summarize the advancements in the development, analysis and applications of deepESNs. …
Document worth reading: “Instance-Level Explanations for Fraud Detection: A Case Study”
Fraud detection is a difficult problem that can benefit from predictive modeling. However, the verification of a prediction is challenging; for a single insurance policy, the model only provides a prediction score. We present a case study where we reflect on different instance-level model explanation techniques to aid a fraud detection team in their work. To this end, we designed two novel dashboards combining various state-of-the-art explanation techniques. These enable the domain expert to analyze and understand predictions, dramatically speeding up the process of filtering potential fraud cases. Finally, we discuss the lessons learned and outline open research issues. Instance-Level Explanations for Fraud Detection: A Case Study
Simulating Multi-state Models with R
Introduction Multi-state models are used to model a trajectory through multiple states. Survival models are a special case in which there are two states, alive and dead. Multi-state models are therefore useful in clinical settings because they can be used to predict or simulate disease progression in detail. Putter et al. provide a helpful tutorial.
Nimble tweak to use specific python version or virtual environment in RStudio
Reticulate made switch between R & Python easy, and doing its best to facilitate both worlds of data science.