If you did not already know

Deep Echo State Network (deepESN) The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions of recurrent layers, i.e. on the bias of depth in RNNs architectural design. In this paper, we summarize the advancements in the development, analysis and applications of deepESNs. …

LISAL Most environmental phenomena, such as wind profiles, ozone concentration and sunlight distribution under a forest canopy, exhibit nonstationary dynamics i.e. phenomenon variation change depending on the location and time of occurrence. Non-stationary dynamics pose both theoretical and practical challenges to statistical machine learning algorithms aiming to accurately capture the complexities governing the evolution of such processes. In this paper, we address the sampling aspects of the problem of learning nonstationary spatio-temporal models, and propose an efficient yet simple algorithm – LISAL. The core idea in LISAL is to learn two models using Gaussian processes (GPs) wherein the first is a nonstationary GP directly modeling the phenomenon. The second model uses a stationary GP representing a latent space corresponding to changes in dynamics, or the nonstationarity characteristics of the first model. LISAL involves adaptively sampling the latent space dynamics using information theory quantities to reduce the computational cost during the learning phase. The relevance of LISAL is extensively validated using multiple real world datasets. Efficiently Learning Nonstationary Gaussian Processes …

Probability-based Detection Quality (PDQ) We propose a new visual object detector evaluation measure which not only assesses detection quality, but also accounts for the spatial and label uncertainties produced by object detection systems. Current evaluation measures such as mean average precision (mAP) do not take these two aspects into account, accepting detections with no spatial uncertainty and using only the label with the winning score instead of a full class probability distribution to rank detections. To overcome these limitations, we propose the probability-based detection quality (PDQ) measure which evaluates both spatial and label probabilities, requires no thresholds to be predefined, and optimally assigns ground-truth objects to detections. Our experimental evaluation shows that PDQ rewards detections with accurate spatial probabilities and explicitly evaluates label probability to determine detection quality. PDQ aims to encourage the development of new object detection approaches that provide meaningful spatial and label uncertainty measures. …

Like this:

Like Loading…

Related