Document worth reading: “Learnable: Theory vs Applications”

Two different views on machine learning problem: Applied learning (machine learning with business applications) and Agnostic PAC learning are formalized and compared here. I show that, under some conditions, the theory of PAC Learnable provides a way to solve the Applied learning problem. However, the theory requires to have the training sets so large, that it would make the learning practically useless. I suggest shedding some theoretical misconceptions about learning to make the theory more aligned with the needs and experience of practitioners. Learnable: Theory vs Applications

Like this:

Like Loading…

Related