If you did not already know

BayesGrad Recent advances in graph convolutional networks have significantly improved the performance of chemical predictions, raising a new research question: ‘how do we explain the predictions of graph convolutional networks ‘ A possible approach to answer this question is to visualize evidence substructures responsible for the predictions. For chemical property prediction tasks, the sample size of the training data is often small and/or a label imbalance problem occurs, where a few samples belong to a single class and the majority of samples belong to the other classes. This can lead to uncertainty related to the learned parameters of the machine learning model. To address this uncertainty, we propose BayesGrad, utilizing the Bayesian predictive distribution, to define the importance of each node in an input graph, which is computed efficiently using the dropout technique. We demonstrate that BayesGrad successfully visualizes the substructures responsible for the label prediction in the artificial experiment, even when the sample size is small. Furthermore, we use a real dataset to evaluate the effectiveness of the visualization. The basic idea of BayesGrad is not limited to graph-structured data and can be applied to other data types. …

Logistic Dynamic Weight Based Sine Cosine Search Algorithm (LDW-SCSA) Particle swarm optimization (PSO) and Sine Cosine algorithm (SCA) have been widely used optimization methods but these methods have some disadvantages such as trapped local optimum point. In order to solve this problem and obtain more successful results than others, a novel logistic dynamic weight based sine cosine search algorithm (LDW-SCSA) is presented in this paper. In the LDW-SCSA method, logistic map is used as dynamic weight generator. Logistic map is one of the famous and widely used chaotic map in the literature. Search process of SCA is modified in the LDW-SCSA. To evaluate performance of the LDW-SCSA, the widely used numerical benchmark functions were utilized as test suite and other swarm optimization methods were used to obtain the comparison results. Superior performances of the LDW-SCSA are proved success of this method. …

MOOC Replication Framework (MORF) The MOOC Replication Framework (MORF) is a novel software system for feature extraction, model training/testing, and evaluation of predictive dropout models in Massive Open Online Courses (MOOCs). MORF makes large-scale replication of complex machine-learned models tractable and accessible for researchers, and enables public research on privacy-protected data. It does so by focusing on the high-level operations of an \emph{extract-train-test-evaluate} workflow, and enables researchers to encapsulate their implementations in portable, fully reproducible software containers which are executed on data with a known schema. MORF’s workflow allows researchers to use data in analysis without providing them access to the underlying data directly, preserving privacy and data security. During execution, containers are sandboxed for security and data leakage and parallelized for efficiency, allowing researchers to create and test new models rapidly, on large-scale multi-institutional datasets that were previously inaccessible to most researchers. MORF is provided both as a Python API (the MORF Software), for institutions to use on their own MOOC data) or in a platform-as-a-service (PaaS) model with a web API and a high-performance computing environment (the MORF Platform). …

Like this:

Like Loading…

Related