If you did not already know

Evoplex Evoplex is a fast, robust and extensible platform for developing agent-based models and multi-agent systems on networks. Each agent is represented as a node and interacts with its neighbors, as defined by the network structure. Evoplex is ideal for modeling complex systems, for example in evolutionary game theory and computational social science. In Evoplex, the models are not coupled to the execution parameters or the visualization tools, and there is a user-friendly graphical user interface which makes it easy for all users, ranging from newcomers to experienced, to create, analyze, replicate and reproduce the experiments. …

ModelDepot A platform for discovering, sharing, and discussing easy to use and pre-trained machine learning models. …

Differentially Private Autoencoder-Based Generative Model (DP-AuGM) Deep neural networks (DNNs) have recently been widely adopted in various applications, and such success is largely due to a combination of algorithmic breakthroughs, computation resource improvements, and access to a large amount of data. However, the large-scale data collections required for deep learning often contain sensitive information, therefore raising many privacy concerns. Prior research has shown several successful attacks in inferring sensitive training data information, such as model inversion, membership inference, and generative adversarial networks (GAN) based leakage attacks against collaborative deep learning. In this paper, to enable learning efficiency as well as to generate data with privacy guarantees and high utility, we propose a differentially private autoencoder-based generative model (DP-AuGM) and a differentially private variational autoencoder-based generative model (DP-VaeGM). We evaluate the robustness of two proposed models. We show that DP-AuGM can effectively defend against the model inversion, membership inference, and GAN-based attacks. We also show that DP-VaeGM is robust against the membership inference attack. We conjecture that the key to defend against the model inversion and GAN-based attacks is not due to differential privacy but the perturbation of training data. Finally, we demonstrate that both DP-AuGM and DP-VaeGM can be easily integrated with real-world machine learning applications, such as machine learning as a service and federated learning, which are otherwise threatened by the membership inference attack and the GAN-based attack, respectively. …

Like this:

Like Loading…

Related