Neural Relational Inference (NRI) Interacting systems are prevalent in nature, from dynamical systems in physics to complex societal dynamics. The interplay of components can give rise to complex behavior, which can often be explained using a simple model of the system’s constituent parts. In this work, we introduce the neural relational inference (NRI) model: an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data. Our model takes the form of a variational auto-encoder, in which the latent code represents the underlying interaction graph and the reconstruction is based on graph neural networks. In experiments on simulated physical systems, we show that our NRI model can accurately recover ground-truth interactions in an unsupervised manner. We further demonstrate that we can find an interpretable structure and predict complex dynamics in real motion capture and sports tracking data. …
TrQuery In this paper, we present an embedding-based framework (TrQuery) for recommending solutions of a SPARQL query, including approximate solutions when exact querying solutions are not available due to incompleteness or inconsistencies of real-world RDF data. Within this framework, embedding is applied to score solutions together with edit distance so that we could obtain more fine-grained recommendations than those recommendations via edit distance. For instance, graphs of two querying solutions with a similar structure can be distinguished in our proposed framework while the edit distance depending on structural difference becomes unable. To this end, we propose a novel score model built on vector space generated in embedding system to compute the similarity between an approximate subgraph matching and a whole graph matching. Finally, we evaluate our approach on large RDF datasets DBpedia and YAGO, and experimental results show that TrQuery exhibits an excellent behavior in terms of both effectiveness and efficiency. …
Evidential C-Medoids (ECMdd) In this work, a new prototype-based clustering method named Evidential C-Medoids (ECMdd), which belongs to the family of medoid-based clustering for proximity data, is proposed as an extension of Fuzzy C-Medoids (FCMdd) on the theoretical framework of belief functions. In the application of FCMdd and original ECMdd, a single medoid (prototype), which is supposed to belong to the object set, is utilized to represent one class. For the sake of clarity, this kind of ECMdd using a single medoid is denoted by sECMdd. In real clustering applications, using only one pattern to capture or interpret a class may not adequately model different types of group structure and hence limits the clustering performance. In order to address this problem, a variation of ECMdd using multiple weighted medoids, denoted by wECMdd, is presented. Unlike sECMdd, in wECMdd objects in each cluster carry various weights describing their degree of representativeness for that class. This mechanism enables each class to be represented by more than one object. Experimental results in synthetic and real data sets clearly demonstrate the superiority of sECMdd and wECMdd. Moreover, the clustering results by wECMdd can provide richer information for the inner structure of the detected classes with the help of prototype weights. …
Like this:
Like Loading…
Related