Whats new on arXiv

Machine Learning in Official Statistics

In the first half of 2018, the Federal Statistical Office of Germany (Destatis) carried out a ‘Proof of Concept Machine Learning’ as part of its Digital Agenda. A major component of this was surveys on the use of machine learning methods in official statistics, which were conducted at selected national and international statistical institutions and among the divisions of Destatis. It was of particular interest to find out in which statistical areas and for which tasks machine learning is used and which methods are applied. This paper is intended to make the results of the surveys publicly accessible.

Same but Different: Distant Supervision for Predicting and Understanding Entity Linking Difficulty

Entity Linking (EL) is the task of automatically identifying entity mentions in a piece of text and resolving them to a corresponding entity in a reference knowledge base like Wikipedia. There is a large number of EL tools available for different types of documents and domains, yet EL remains a challenging task where the lack of precision on particularly ambiguous mentions often spoils the usefulness of automated disambiguation results in real applications. A priori approximations of the difficulty to link a particular entity mention can facilitate flagging of critical cases as part of semi-automated EL systems, while detecting latent factors that affect the EL performance, like corpus-specific features, can provide insights on how to improve a system based on the special characteristics of the underlying corpus. In this paper, we first introduce a consensus-based method to generate difficulty labels for entity mentions on arbitrary corpora. The difficulty labels are then exploited as training data for a supervised classification task able to predict the EL difficulty of entity mentions using a variety of features. Experiments over a corpus of news articles show that EL difficulty can be estimated with high accuracy, revealing also latent features that affect EL performance. Finally, evaluation results demonstrate the effectiveness of the proposed method to inform semi-automated EL pipelines.

An Unbiased Approach to Quantification of Gender Inclination using Interpretable Word Representations

Recent advances in word embedding provide significant benefit to various information processing tasks. Yet these dense representations and their estimation of word-to-word relatedness remain difficult to interpret and hard to analyze. As an alternative, explicit word representations i.e. vectors with clearly-defined dimensions, which can be words, windows of words, or documents are easily interpretable, and recent methods show competitive performance to the dense vectors. In this work, we propose a method to transfer word2vec SkipGram embedding model to its explicit representation model. The method provides interpretable explicit vectors while keeping the effectiveness of the original model, tested by evaluating the model on several word association collections. Based on the proposed explicit representation, we propose a novel method to quantify the degree of the existence of gender bias in the English language (used in Wikipedia) with regard to a set of occupations. By measuring the bias towards explicit Female and Male factors, the work demonstrates a general tendency of the majority of the occupations to male and a strong bias in a few specific occupations (e.g. nurse) to female.

A Fuzzy Community-Based Recommender System Using PageRank

Recommendation systems are widely used by different user service providers specially those who have interactions with the large community of users. This paper introduces a recommender system based on community detection. The recommendation is provided using the local and global similarities between users. The local information is obtained from communities, and the global ones are based on the ratings. Here, a new fuzzy community detection using the personalized PageRank metaphor is introduced. The fuzzy membership values of the users to the communities are utilized to define a similarity measure. The method is evaluated by using two well-known datasets: MovieLens and FilmTrust. The results show that our method outperforms recent recommender systems.

Correlated Anomaly Detection from Large Streaming Data

Correlated anomaly detection (CAD) from streaming data is a type of group anomaly detection and an essential task in useful real-time data mining applications like botnet detection, financial event detection, industrial process monitor, etc. The primary approach for this type of detection in previous researches is based on principal score (PS) of divided batches or sliding windows by computing top eigenvalues of the correlation matrix, e.g. the Lanczos algorithm. However, this paper brings up the phenomenon of principal score degeneration for large data set, and then mathematically and practically prove current PS-based methods are likely to fail for CAD on large-scale streaming data even if the number of correlated anomalies grows with the data size at a reasonable rate; in reality, anomalies tend to be the minority of the data, and this issue can be more serious. We propose a framework with two novel randomized algorithms rPS and gPS for better detection of correlated anomalies from large streaming data of various correlation strength. The experiment shows high and balanced recall and estimated accuracy of our framework for anomaly detection from a large server log data set and a U.S. stock daily price data set in comparison to direct principal score evaluation and some other recent group anomaly detection algorithms. Moreover, our techniques significantly improve the computation efficiency and scalability for principal score calculation.

Transfer Learning in Astronomy: A New Machine-Learning Paradigm

The widespread dissemination of machine learning tools in science, particularly in astronomy, has revealed the limitation of working with simple single-task scenarios in which any task in need of a predictive model is looked in isolation, and ignores the existence of other similar tasks. In contrast, a new generation of techniques is emerging where predictive models can take advantage of previous experience to leverage information from similar tasks. The new emerging area is referred to as transfer learning. In this paper, I briefly describe the motivation behind the use of transfer learning techniques, and explain how such techniques can be used to solve popular problems in astronomy. As an example, a prevalent problem in astronomy is to estimate the class of an object (e.g., Supernova Ia) using a generation of photometric light-curve datasets where data abounds, but class labels are scarce; such analysis can benefit from spectroscopic data where class labels are known with high confidence, but the data sample is small. Transfer learning provides a robust and practical solution to leverage information from one domain to improve the accuracy of a model built on a different domain. In the example above, transfer learning would look to overcome the difficulty in the compatibility of models between spectroscopic data and photometric data, since data properties such as size, class priors, and underlying distributions, are all expected to be significantly different.

NeuroX: A Toolkit for Analyzing Individual Neurons in Neural Networks

We present a toolkit to facilitate the interpretation and understanding of neural network models. The toolkit provides several methods to identify salient neurons with respect to the model itself or an external task. A user can visualize selected neurons, ablate them to measure their effect on the model accuracy, and manipulate them to control the behavior of the model at the test time. Such an analysis has a potential to serve as a springboard in various research directions, such as understanding the model, better architectural choices, model distillation and controlling data biases.

Trevor: Automatic configuration and scaling of stream processing pipelines

Operating a distributed data stream processing workload efficiently at scale is hard. The operator of the workload must parallelize and lay out tasks of the workload with resources that match the requirement of target data rate. The challenge is that neither the operator nor the programmer is typically aware of the scaling behavior of the workload as a function of resources. An operator manually searches for a safe operating point that can handle predicted peak load and deploys with ample headroom for absorbing unpredictable spikes. Such empirical, static over-provisioning is wasteful of both compute and human resources. We show that precise performance models can be automatically learned for distributed stream processing systems that can predict the execution performance of a job even before deployment. Further, those models can be used to optimally schedule logically specified jobs onto available physical hardware. Finally, those models and the derived execution schedules can be refined online to dynamically adapt to unpredictable changes in the runtime environment or auto-scale with variations in job load.

A Survey on Deep Learning for Named Entity Recognition

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Joint Slot Filling and Intent Detection via Capsule Neural Networks

Being able to recognize words as slots and detect the intent of an utterance has been a keen issue in natural language understanding. The existing works either treat slot filling and intent detection separately in a pipeline manner, or adopt joint models which sequentially label slots while summarizing the utterance-level intent without explicitly preserving the hierarchical relationship among words, slots, and intents. To exploit the semantic hierarchy for effective modeling, we propose a capsule-based neural network model which accomplishes slot filling and intent detection via a dynamic routing-by-agreement schema. A re-routing schema is proposed to further synergize the slot filling performance using the inferred intent representation. Experiments on two real-world datasets show the effectiveness of our model when compared with other alternative model architectures, as well as existing natural language understanding services.

Modified Causal Forests for Estimating Heterogeneous Causal Effects

Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables framework by modifying the Causal Forest approach suggested by Wager and Athey (2018). The new estimators have desirable theoretical and computational properties for various aggregation levels of the causal effects. An Empirical Monte Carlo study shows that they may outperform previously suggested estimators. Inference tends to be accurate for effects relating to larger groups and conservative for effects relating to fine levels of granularity. An application to the evaluation of an active labour market programme shows the value of the new methods for applied research.

Random Projection in Deep Neural Networks

This work investigates the ways in which deep learning methods can benefit from random projection (RP), a classic linear dimensionality reduction method. We focus on two areas where, as we have found, employing RP techniques can improve deep models: training neural networks on high-dimensional data and initialization of network parameters. Training deep neural networks (DNNs) on sparse, high-dimensional data with no exploitable structure implies a network architecture with an input layer that has a huge number of weights, which often makes training infeasible. We show that this problem can be solved by prepending the network with an input layer whose weights are initialized with an RP matrix. We propose several modifications to the network architecture and training regime that makes it possible to efficiently train DNNs with learnable RP layer on data with as many as tens of millions of input features and training examples. In comparison to the state-of-the-art methods, neural networks with RP layer achieve competitive performance or improve the results on several extremely high-dimensional real-world datasets. The second area where the application of RP techniques can be beneficial for training deep models is weight initialization. Setting the initial weights in DNNs to elements of various RP matrices enabled us to train residual deep networks to higher levels of performance.

Escape Room: A Configurable Testbed for Hierarchical Reinforcement Learning

Recent successes in Reinforcement Learning have encouraged a fast-growing network of RL researchers and a number of breakthroughs in RL research. As the RL community and the body of RL work grows, so does the need for widely applicable benchmarks that can fairly and effectively evaluate a variety of RL algorithms. This need is particularly apparent in the realm of Hierarchical Reinforcement Learning (HRL). While many existing test domains may exhibit hierarchical action or state structures, modern RL algorithms still exhibit great difficulty in solving domains that necessitate hierarchical modeling and action planning, even when such domains are seemingly trivial. These difficulties highlight both the need for more focus on HRL algorithms themselves, and the need for new testbeds that will encourage and validate HRL research. Existing HRL testbeds exhibit a Goldilocks problem; they are often either too simple (e.g. Taxi) or too complex (e.g. Montezuma’s Revenge from the Arcade Learning Environment). In this paper we present the Escape Room Domain (ERD), a new flexible, scalable, and fully implemented testing domain for HRL that bridges the ‘moderate complexity’ gap left behind by existing alternatives. ERD is open-source and freely available through GitHub, and conforms to widely-used public testing interfaces for simple integration and testing with a variety of public RL agent implementations. We show that the ERD presents a suite of challenges with scalable difficulty to provide a smooth learning gradient from Taxi to the Arcade Learning Environment.

On Functional Aggregate Queries with Additive Inequalities

Motivated by fundamental applications in databases and relational machine learning, we formulate and study the problem of answering Functional Aggregate Queries (FAQ) in which some of the input factors are defined by a collection of Additive Inequalities between variables. We refer to these queries as FAQ-AI for short. To answer FAQ-AI in the Boolean semiring, we define ‘relaxed’ tree decompositions and ‘relaxed’ submodular and fractional hypertree width parameters. We show that an extension of the InsideOut algorithm using Chazelle’s geometric data structure for solving the semigroup range search problem can answer Boolean FAQ-AI in time given by these new width parameters. This new algorithm achieves lower complexity than known solutions for FAQ-AI. It also recovers some known results in database query answering. Our second contribution is a relaxation of the set of polymatroids that gives rise to the counting version of the submodular width, denoted by ‘#subw’. This new width is sandwiched between the submodular and the fractional hypertree widths. Any FAQ and FAQ-AI over one semiring can be answered in time proportional to #subw and respectively to the relaxed version of #subw. We present three applications of our FAQ-AI framework to relational machine learning: k-means clustering, training linear support vector machines, and training models using non-polynomial loss. These optimization problems can be solved over a database asymptotically faster than computing the join of the database relations.

Dimensionality Reduction of Hyperspectral Imagery Based on Spatial-spectral Manifold Learning

The graph embedding (GE) methods have been widely applied for dimensionality reduction of hyperspectral imagery (HSI). However, a major challenge of GE is how to choose proper neighbors for graph construction and explore the spatial information of HSI data. In this paper, we proposed an unsupervised dimensionality reduction algorithm termed spatial-spectral manifold reconstruction preserving embedding (SSMRPE) for HSI classification. At first, a weighted mean filter (WMF) is employed to preprocess the image, which aims to reduce the influence of background noise. According to the spatial consistency property of HSI, the SSMRPE method utilizes a new spatial-spectral combined distance (SSCD) to fuse the spatial structure and spectral information for selecting effective spatial-spectral neighbors of HSI pixels. Then, it explores the spatial relationship between each point and its neighbors to adjusts the reconstruction weights for improving the efficiency of manifold reconstruction. As a result, the proposed method can extract the discriminant features and subsequently improve the classification performance of HSI. The experimental results on PaviaU and Salinas hyperspectral datasets indicate that SSMRPE can achieve better classification accuracies in comparison with some state-of-the-art methods.

TEST: A Terminology Extraction System for Technology Related Terms

Tracking developments in the highly dynamic data-technology landscape are vital to keeping up with novel technologies and tools, in the various areas of Artificial Intelligence (AI). However, It is difficult to keep track of all the relevant technology keywords. In this paper, we propose a novel system that addresses this problem. This tool is used to automatically detect the existence of new technologies and tools in text, and extract terms used to describe these new technologies. The extracted new terms can be logged as new AI technologies as they are found on-the-fly in the web. It can be subsequently classified into the relevant semantic labels and AI domains. Our proposed tool is based on a two-stage cascading model — the first stage classifies if the sentence contains a technology term or not; and the second stage identifies the technology keyword in the sentence. We obtain a competitive accuracy for both tasks of sentence classification and text identification.

TaxoGen: Unsupervised Topic Taxonomy Construction by Adaptive Term Embedding and Clustering

Taxonomy construction is not only a fundamental task for semantic analysis of text corpora, but also an important step for applications such as information filtering, recommendation, and Web search. Existing pattern-based methods extract hypernym-hyponym term pairs and then organize these pairs into a taxonomy. However, by considering each term as an independent concept node, they overlook the topical proximity and the semantic correlations among terms. In this paper, we propose a method for constructing topic taxonomies, wherein every node represents a conceptual topic and is defined as a cluster of semantically coherent concept terms. Our method, TaxoGen, uses term embeddings and hierarchical clustering to construct a topic taxonomy in a recursive fashion. To ensure the quality of the recursive process, it consists of: (1) an adaptive spherical clustering module for allocating terms to proper levels when splitting a coarse topic into fine-grained ones; (2) a local embedding module for learning term embeddings that maintain strong discriminative power at different levels of the taxonomy. Our experiments on two real datasets demonstrate the effectiveness of TaxoGen compared with baseline methods.

Online learning with stability guarantees: A memory-based real-time model predictive controller

We propose and analyze a real-time model predictive control (MPC) scheme that utilizes stored data to improve its performance by learning the value function online with stability guarantees. The suboptimality of the applied control input resulting from the real-time requirements is shown to vanish over time as more and more data is collected. For linear and nonlinear systems, a learning method is presented that makes use of basic analytic properties of the cost function and is proven to recover the value function on the limit set of the closed-loop state trajectory. Simulative examples show that existing real-time MPC schemes can be improved by storing data and the proposed learning scheme.

Bayesian Meta-network Architecture Learning

For deep neural networks, the particular structure often plays a vital role in achieving state-of-the-art performances in many practical applications. However, existing architecture search methods can only learn the architecture for a single task at a time. In this paper, we first propose a Bayesian inference view of architecture learning and use this novel view to derive a variational inference method to learn the architecture of a meta-network, which will be shared across multiple tasks. To account for the task distribution in the posterior distribution of the architecture and its corresponding weights, we exploit the optimization embedding technique to design the parameterization of the posterior. Our method finds architectures which achieve state-of-the-art performance on the few-shot learning problem and demonstrates the advantages of meta-network learning for both architecture search and meta-learning.

Like this:

Like Loading…

Related