If you did not already know

Convolutional Sequence Embedding Recommendation Model (Caser) Top-$N$ sequential recommendation models each user as a sequence of items interacted in the past and aims to predict top-$N$ ranked items that a user will likely interact in a near future’. The order of interaction implies that sequential patterns play an important role where more recent items in a sequence have a larger impact on the next item. In this paper, we propose a Convolutional Sequence Embedding Recommendation Model (\emph{Caser}) as a solution to address this requirement. The idea is to embed a sequence of recent items into an image’ in the time and latent spaces and learn sequential patterns as local features of the image using convolutional filters. This approach provides a unified and flexible network structure for capturing both general preferences and sequential patterns. The experiments on public datasets demonstrated that Caser consistently outperforms state-of-the-art sequential recommendation methods on a variety of common evaluation metrics. …

2P-DNN Machine Learning as a Service (MLaaS), such as Microsoft Azure, Amazon AWS, offers an effective DNN model to complete the machine learning task for small businesses and individuals who are restricted to the lacking data and computing power. However, here comes an issue that user privacy is ex-posed to the MLaaS server, since users need to upload their sensitive data to the MLaaS server. In order to preserve their privacy, users can encrypt their data before uploading it. This makes it difficult to run the DNN model because it is not designed for running in ciphertext domain. In this paper, using the Paillier homomorphic cryptosystem we present a new Privacy-Preserving Deep Neural Network model that we called 2P-DNN. This model can fulfill the machine leaning task in ciphertext domain. By using 2P-DNN, MLaaS is able to provide a Privacy-Preserving machine learning ser-vice for users. We build our 2P-DNN model based on LeNet-5, and test it with the encrypted MNIST dataset. The classification accuracy is more than 97%, which is close to the accuracy of LeNet-5 running with the MNIST dataset and higher than that of other existing Privacy-Preserving machine learning models …

Test Oracle In computing, software engineering and software testing a test oracle, or just oracle, is a mechanism for determining whether a test has passed or failed. The use of oracles involves comparing the output(s) of the system under test, for a given test-case input, to the output(s) that the oracle determines that product should have. The term ‘test oracle’ was first introduced in a paper by William E. Howden. Additional work on different kinds of oracles was explored by Elaine Weyuker. Oracles often operate separately from the system under test. However, method postconditions are part of the system under test, as automated oracles in design by contract models. Determining the correct output for a given input (and a set of program/system states) is known as the oracle problem or test oracle problem which is a much harder problem than it seems, and involves working with problems related to controllability and observability. …

Like this:

Like Loading…

Related