Whats new on arXiv

Efficient and Robust Machine Learning for Real-World Systems

While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation and the vision of the Internet-of-Things fuel the interest in resource efficient approaches. These approaches require a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. On top of this, it is crucial to treat uncertainty in a consistent manner in all but the simplest applications of machine learning systems. In particular, a desideratum for any real-world system is to be robust in the presence of outliers and corrupted data, as well as being `aware’ of its limits, i.e.\ the system should maintain and provide an uncertainty estimate over its own predictions. These complex demands are among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology into every day’s applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. First we provide a comprehensive review of resource-efficiency in deep neural networks with focus on techniques for model size reduction, compression and reduced precision. These techniques can be applied during training or as post-processing and are widely used to reduce both computational complexity and memory footprint. As most (practical) neural networks are limited in their ways to treat uncertainty, we contrast them with probabilistic graphical models, which readily serve these desiderata by means of probabilistic inference. In that way, we provide an extensive overview of the current state-of-the-art of robust and efficient machine learning for real-world systems.

GADGET SVM: A Gossip-bAseD sub-GradiEnT Solver for Linear SVMs

In the era of big data, an important weapon in a machine learning researcher’s arsenal is a scalable Support Vector Machine (SVM) algorithm. SVMs are extensively used for solving classification problems. Traditional algorithms for learning SVMs often scale super linearly with training set size which becomes infeasible very quickly for large data sets. In recent years, scalable algorithms have been designed which study the primal or dual formulations of the problem. This often suggests a way to decompose the problem and facilitate development of distributed algorithms. In this paper, we present a distributed algorithm for learning linear Support Vector Machines in the primal form for binary classification called Gossip-bAseD sub-GradiEnT (GADGET) SVM. The algorithm is designed such that it can be executed locally on nodes of a distributed system. Each node processes its local homogeneously partitioned data and learns a primal SVM model. It then gossips with random neighbors about the classifier learnt and uses this information to update the model. Extensive theoretical and empirical results suggest that this anytime algorithm has performance comparable to its centralized and online counterparts.

Adversarially Learned Anomaly Detection

Anomaly detection is a significant and hence well-studied problem. However, developing effective anomaly detection methods for complex and high-dimensional data remains a challenge. As Generative Adversarial Networks (GANs) are able to model the complex high-dimensional distributions of real-world data, they offer a promising approach to address this challenge. In this work, we propose an anomaly detection method, Adversarially Learned Anomaly Detection (ALAD) based on bi-directional GANs, that derives adversarially learned features for the anomaly detection task. ALAD then uses reconstruction errors based on these adversarially learned features to determine if a data sample is anomalous. ALAD builds on recent advances to ensure data-space and latent-space cycle-consistencies and stabilize GAN training, which results in significantly improved anomaly detection performance. ALAD achieves state-of-the-art performance on a range of image and tabular datasets while being several hundred-fold faster at test time than the only published GAN-based method.

RDEC: Integrating Regularization into Deep Embedded Clustering for Imbalanced Datasets

Clustering is a fundamental machine learning task and can be used in many applications. With the development of deep neural networks (DNNs), combining techniques from DNNs with clustering has become a new research direction and achieved some success. However, few studies have focused on the imbalanced-data problem which commonly occurs in real-world applications. In this paper, we propose a clustering method, regularized deep embedding clustering (RDEC), that integrates virtual adversarial training (VAT), a network regularization technique, with a clustering method called deep embedding clustering (DEC). DEC optimizes cluster assignments by pushing data more densely around centroids in latent space, but it is sometimes sensitive to the initial location of centroids, especially in the case of imbalanced data, where the minor class has less chance to be assigned a good centroid. RDEC introduces regularization using VAT to ensure the model’s robustness to local perturbations of data. VAT pushes data that are similar in the original space closer together in the latent space, bunching together data from minor classes and thereby facilitating cluster identification by RDEC. Combining the advantages of DEC and VAT, RDEC attains state-of-the-art performance on both balanced and imbalanced benchmark/real-world datasets. For example, accuracies are as high as 98.41% on MNIST dataset and 85.45% on a highly imbalanced dataset derived from the MNIST, which is nearly 8% higher than the current best result.

Top-K Off-Policy Correction for a REINFORCE Recommender System

Industrial recommender systems deal with extremely large action spaces — many millions of items to recommend. Moreover, they need to serve billions of users, who are unique at any point in time, making a complex user state space. Luckily, huge quantities of logged implicit feedback (e.g., user clicks, dwell time) are available for learning. Learning from the logged feedback is however subject to biases caused by only observing feedback on recommendations selected by the previous versions of the recommender. In this work, we present a general recipe of addressing such biases in a production top-K recommender system at Youtube, built with a policy-gradient-based algorithm, i.e. REINFORCE. The contributions of the paper are: (1) scaling REINFORCE to a production recommender system with an action space on the orders of millions; (2) applying off-policy correction to address data biases in learning from logged feedback collected from multiple behavior policies; (3) proposing a novel top-K off-policy correction to account for our policy recommending multiple items at a time; (4) showcasing the value of exploration. We demonstrate the efficacy of our approaches through a series of simulations and multiple live experiments on Youtube.

dynnode2vec: Scalable Dynamic Network Embedding

Network representation learning in low dimensional vector space has attracted considerable attention in both academic and industrial domains. Most real-world networks are dynamic with addition/deletion of nodes and edges. The existing graph embedding methods are designed for static networks and they cannot capture evolving patterns in a large dynamic network. In this paper, we propose a dynamic embedding method, dynnode2vec, based on the well-known graph embedding method node2vec. Node2vec is a random walk based embedding method for static networks. Applying static network embedding in dynamic settings has two crucial problems: 1) Generating random walks for every time step is time consuming 2) Embedding vector spaces in each timestamp are different. In order to tackle these challenges, dynnode2vec uses evolving random walks and initializes the current graph embedding with previous embedding vectors. We demonstrate the advantages of the proposed dynamic network embedding by conducting empirical evaluations on several large dynamic network datasets.

A Highly Scalable Labelling Approach for Exact Distance Queries in Complex Networks

Answering exact shortest path distance queries is a fundamental task in graph theory. Despite a tremendous amount of research on the subject, there is still no satisfactory solution that can scale to billion-scale complex networks. Labelling-based methods are well-known for rendering fast response time to distance queries; however, existing works can only construct labelling on moderately large networks (million-scale) and cannot scale to large networks (billion-scale) due to their prohibitively large space requirements and very long preprocessing time. In this work, we present novel techniques to efficiently construct distance labelling and process exact shortest path distance queries for complex networks with billions of vertices and billions of edges. Our method is based on two ingredients: (i) a scalable labelling algorithm for constructing minimal distance labelling, and (ii) a querying framework that supports fast distance-bounded search on a sparsified graph. Thus, we first develop a novel labelling algorithm that can scale to graphs at the billion-scale. Then, we formalize a querying framework for exact distance queries, which combines our proposed highway cover distance labelling with distance-bounded searches to enable fast distance computation. To speed up the labelling construction process, we further propose a parallel labelling method that can construct labelling simultaneously for multiple landmarks. We evaluated the performance of the proposed methods on 12 real-world networks. The experiments show that the proposed methods can not only handle networks with billions of vertices, but also be up to 70 times faster in constructing labelling and save up to 90\% of labelling space. In particular, our method can answer distance queries on a billion-scale network of around 8B edges in less than 1ms, on average.

vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases

Blockchains have recently been under the spotlight due to the boom of cryptocurrencies and decentralized applications. There is an increasing demand for querying the data stored in a blockchain database. To ensure query integrity, the user can maintain the entire blockchain database and query the data locally. However, this approach is not economic, if not infeasible, because of the blockchain’s huge data size and considerable maintenance costs. In this paper, we take the first step toward investigating the problem of verifiable query processing over blockchain databases. We propose a novel framework, called vChain, that alleviates the storage and computing costs of the user and employs verifiable queries to guarantee the results’ integrity. To support verifiable Boolean range queries, we propose an accumulator-based authenticated data structure that enables dynamic aggregation over arbitrary query attributes. Two new indexes are further developed to aggregate intra-block and inter-block data records for efficient query verification. We also propose an inverted prefix tree structure to accelerate the processing of a large number of subscription queries simultaneously. Security analysis and empirical study validate the robustness and practicality of the proposed techniques.

MEAL: Multi-Model Ensemble via Adversarial Learning

Anomaly detection with Wasserstein GAN

Generative adversarial networks are a class of generative algorithms that have been widely used to produce state-of-the-art samples. In this paper, we investigate GAN to perform anomaly detection on time series dataset. In order to achieve this goal, a bibliography is made focusing on theoretical properties of GAN and GAN used for anomaly detection. A Wasserstein GAN has been chosen to learn the representation of normal data distribution and a stacked encoder with the generator performs the anomaly detection. W-GAN with encoder seems to produce state of the art anomaly detection scores on MNIST dataset and we investigate its usage on multi-variate time series.

Pseudo-Rehearsal: Achieving Deep Reinforcement Learning without Catastrophic Forgetting

Neural networks can achieve extraordinary results on a wide variety of tasks. However, when they attempt to sequentially learn a number of tasks, they tend to learn the new task while destructively forgetting previous tasks. One solution to this problem is pseudo-rehearsal, which involves learning the new task while rehearsing generated items representative of previous task/s. We demonstrate that pairing pseudo-rehearsal methods with a generative network is an effective solution to this problem in reinforcement learning. Our method iteratively learns three Atari 2600 games while retaining above human level performance on all three games, performing similar to a network which rehearses real examples from all previously learnt tasks.

Modelling Identity Rules with Neural Networks

In this paper, we show that standard feed-forward and recurrent neural networks fail to learn abstract patterns based on identity rules. We propose Repetition Based Pattern (RBP) extensions to neural network structures that solve this problem and answer, as well as raise, questions about integrating structures for inductive bias into neural networks. Examples of abstract patterns are the sequence patterns ABA and ABB where A or B can be any object. These were introduced by Marcus et al (1999) who also found that 7 month old infants recognise these patterns in sequences that use an unfamiliar vocabulary while simple recurrent neural networks do not.This result has been contested in the literature but it is confirmed by our experiments. We also show that the inability to generalise extends to different, previously untested, settings. We propose a new approach to modify standard neural network architectures, called Repetition Based Patterns (RBP) with different variants for classification and prediction. Our experiments show that neural networks with the appropriate RBP structure achieve perfect classification and prediction performance on synthetic data, including mixed concrete and abstract patterns. RBP also improves neural network performance in experiments with real-world sequence prediction tasks. We discuss these finding in terms of challenges for neural network models and identify consequences from this result in terms of developing inductive biases for neural network learning.

RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation

Recurrent neural networks for session-based recommendation have attracted a lot of attention recently because of their promising performance. repeat consumption is a common phenomenon in many recommendation scenarios (e.g., e-commerce, music, and TV program recommendations), where the same item is re-consumed repeatedly over time. However, no previous studies have emphasized repeat consumption with neural networks. An effective neural approach is needed to decide when to perform repeat recommendation. In this paper, we incorporate a repeat-explore mechanism into neural networks and propose a new model, called RepeatNet, with an encoder-decoder structure. RepeatNet integrates a regular neural recommendation approach in the decoder with a new repeat recommendation mechanism that can choose items from a user’s history and recommends them at the right time. We report on extensive experiments on three benchmark datasets. RepeatNet outperforms state-of-the-art baselines on all three datasets in terms of MRR and Recall. Furthermore, as the dataset size and the repeat ratio increase, the improvements of RepeatNet over the baselines also increase, which demonstrates its advantage in handling repeat recommendation scenarios.

Differentially Private Fair Learning

We design two learning algorithms that simultaneously promise differential privacy and equalized odds, a ‘fairness’ condition that corresponds to equalizing false positive and negative rates across protected groups. Our first algorithm is a simple private implementation of the post-processing approach of [Hardt et al. 2016]. This algorithm has the merit of being exceedingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as ‘disparate treatment’. The second algorithm is a differentially private version of the algorithm of [Agarwal et al. 2018], an oracle-efficient algorithm that can be used to find the optimal fair classifier, given access to a subroutine that can solve the original (not necessarily fair) learning problem. This algorithm need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time.

Like this:

Like Loading…

Related