If you did not already know

Context-aware Sentiment Word Identification (sentiword2vec) Traditional sentiment analysis often uses sentiment dictionary to extract sentiment information in text and classify documents. However, emerging informal words and phrases in user generated content call for analysis aware to the context. Usually, they have special meanings in a particular context. Because of its great performance in representing inter-word relation, we use sentiment word vectors to identify the special words. Based on the distributed language model word2vec, in this paper we represent a novel method about sentiment representation of word under particular context, to be detailed, to identify the words with abnormal sentiment polarity in long answers. Result shows the improved model shows better performance in representing the words with special meaning, while keep doing well in representing special idiomatic pattern. Finally, we will discuss the meaning of vectors representing in the field of sentiment, which may be different from general object-based conditions. …

PyDCI This paper introduces PyDCI, a new implementation of Distributional Correspondence Indexing (DCI) written in Python. DCI is a transfer learning method for cross-domain and cross-lingual text classification for which we had provided an implementation (here called JaDCI) built on top of JaTeCS, a Java framework for text classification. PyDCI is a stand-alone version of DCI that exploits scikit-learn and the SciPy stack. We here report on new experiments that we have carried out in order to test PyDCI, and in which we use as baselines new high-performing methods that have appeared after DCI was originally proposed. These experiments show that, thanks to a few subtle ways in which we have improved DCI, PyDCI outperforms both JaDCI and the above-mentioned high-performing methods, and delivers the best known results on the two popular benchmarks on which we had tested DCI, i.e., MultiDomainSentiment (a.k.a. MDS — for cross-domain adaptation) and Webis-CLS-10 (for cross-lingual adaptation). PyDCI, together with the code allowing to replicate our experiments, is available at https://…/pydci . …

Generalized Additive Models for Location, Scale and Shape (GAMLSS) This paper introduces generalized additive models for location, scale and shape (GAMLSS) as a modeling framework for analyzing treatment effects beyond the mean. By relating each parameter of the response distribution to explanatory variables, GAMLSS model the treatment effect on the whole conditional distribution. Additionally, any nonnormal outcome and nonlinear effects of explanatory variables can be incorporated. We elaborate on the combination of GAMLSS with program evaluation methods in economics and provide a practical guide to the usage of GAMLSS by reanalyzing data from the \textit{Progresa} program. Contrary to expectations, no significant effects of a cash transfer on the conditional inequality level between treatment and control group are found. …

Like this:

Like Loading…

Related