If you did not already know

Automated Lyric Annotation (ALA) Comprehending lyrics, as found in songs and poems, can pose a challenge to human and machine readers alike. This motivates the need for systems that can understand the ambiguity and jargon found in such creative texts, and provide commentary to aid readers in reaching the correct interpretation. We introduce the task of automated lyric annotation (ALA). Like text simplification, a goal of ALA is to rephrase the original text in a more easily understandable manner. However, in ALA the system must often include additional information to clarify niche terminology and abstract concepts. To stimulate research on this task, we release a large collection of crowdsourced annotations for song lyrics. We analyze the performance of translation and retrieval models on this task, measuring performance with both automated and human evaluation. We find that each model captures a unique type of information important to the task. …

Artificial Quadratic Neural Network (AQNN) In machine learning, the use of an artificial neural network is the mainstream approach. Such a network consists of layers of neurons. These neurons are of the same type characterized by the two features: (1) an inner product of an input vector and a matching weighting vector of trainable parameters and (2) a nonlinear excitation function. Here we investigate the possibility of replacing the inner product with a quadratic function of the input vector, thereby upgrading the 1st order neuron to the 2nd order neuron, empowering individual neurons, and facilitating the optimization of neural networks. Also, numerical examples are provided to illustrate the feasibility and merits of the 2nd order neurons. Finally, further topics are discussed. …

client2vec The workflow of data scientists normally involves potentially inefficient processes such as data mining, feature engineering and model selection. Recent research has focused on automating this workflow, partly or in its entirety, to improve productivity. We choose the former approach and in this paper share our experience in designing the client2vec: an internal library to rapidly build baselines for banking applications. Client2vec uses marginalized stacked denoising autoencoders on current account transactions data to create vector embeddings which represent the behaviors of our clients. These representations can then be used in, and optimized against, a variety of tasks such as client segmentation, profiling and targeting. Here we detail how we selected the algorithmic machinery of client2vec and the data it works on and present experimental results on several business cases. …

Like this:

Like Loading…

Related