If you did not already know

NearBucket Locality Sensitive Hashing (NearBucket-LSH) We present NearBucket-LSH, an effective algorithm for similarity search in large-scale distributed online social networks organized as peer-to-peer overlays. As communication is a dominant consideration in distributed systems, we focus on minimizing the network cost while guaranteeing good search quality. Our algorithm is based on Locality Sensitive Hashing (LSH), which limits the search to collections of objects, called buckets, that have a high probability to be similar to the query. More specifically, NearBucket-LSH employs an LSH extension that searches in near buckets, and improves search quality but also significantly increases the network cost. We decrease the network cost by considering the internals of both LSH and the P2P overlay, and harnessing their properties to our needs. We show that our NearBucket-LSH increases search quality for a given network cost compared to previous art. In many cases, the search quality increases by more than 50%. …

PARyOpt PARyOpt is a python based implementation of the Bayesian optimization routine designed for remote and asynchronous function evaluations. Bayesian optimization is especially attractive for computational optimization due to its low cost function footprint as well as the ability to account for uncertainties in data. A key challenge to efficiently deploy any optimization strategy on distributed computing systems is the synchronization step, where data from multiple function calls is assimilated to identify the next campaign of function calls. Bayesian optimization provides an elegant approach to overcome this issue via asynchronous updates. We formulate, develop and implement a parallel, asynchronous variant of Bayesian optimization. The framework is robust and resilient to external failures. We show how such asynchronous evaluations help reduce the total optimization wall clock time for a suite of test problems. Additionally, we show how the software design of the framework allows easy extension to response surface reconstruction (Kriging), providing a high performance software for autonomous exploration. The software is available on PyPI, with examples and documentation. …

Mean Directional Accuracy (MDA) Mean Directional Accuracy (MDA), also known as Mean Direction Accuracy, is a measure of prediction accuracy of a forecasting method in statistics. It compares the forecast direction (upward or downward) to the actual realized direction. In simple words, MDA provides the probability that the under study forecasting method can detect the correct direction of the time series. MDA is a popular metric for forecasting performance in economics and finance. MDA is used in economics applications where the economists is often interested only in directional movement of variable of interest. As an example in macroeconomics, a monetary authority who likes to know the direction of the inflation, to raises interest rates or decrease the rates if inflation is predicted to rise or drop respectively. Another example can be found in financial planning where the user wants to know if the demand has increasing direction or decreasing trend. …

Like this:

Like Loading…

Related