If you did not already know

Dynamical Atoms Network (DYAN) The ability to anticipate the future is essential when making real time critical decisions, provides valuable information to understand dynamic natural scenes, and can help unsupervised video representation learning. State-of-art video prediction is based on LSTM recursive networks and/or generative adversarial network learning. These are complex architectures that need to learn large numbers of parameters, are potentially hard to train, slow to run, and may produce blurry predictions. In this paper, we introduce DYAN, a novel network with very few parameters and easy to train, which produces accurate, high quality frame predictions, significantly faster than previous approaches. DYAN owes its good qualities to its encoder and decoder, which are designed following concepts from systems identification theory and exploit the dynamics-based invariants of the data. Extensive experiments using several standard video datasets show that DYAN is superior generating frames and that it generalizes well across domains. …

Safe Reinforcement Learning Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning. …

Learning to Multitask (L2MT) Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called learning to multitask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consists of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework. …

Like this:

Like Loading…

Related