If you did not already know

Support Neighbor (SN) Person re-identification (re-ID) has recently been tremendously boosted due to the advancement of deep convolutional neural networks (CNN). The majority of deep re-ID methods focus on designing new CNN architectures, while less attention is paid on investigating the loss functions. Verification loss and identification loss are two types of losses widely used to train various deep re-ID models, both of which however have limitations. Verification loss guides the networks to generate feature embeddings of which the intra-class variance is decreased while the inter-class ones is enlarged. However, training networks with verification loss tends to be of slow convergence and unstable performance when the number of training samples is large. On the other hand, identification loss has good separating and scalable property. But its neglect to explicitly reduce the intra-class variance limits its performance on re-ID, because the same person may have significant appearance disparity across different camera views. To avoid the limitations of the two types of losses, we propose a new loss, called support neighbor (SN) loss. Rather than being derived from data sample pairs or triplets, SN loss is calculated based on the positive and negative support neighbor sets of each anchor sample, which contain more valuable contextual information and neighborhood structure that are beneficial for more stable performance. To ensure scalability and separability, a softmax-like function is formulated to push apart the positive and negative support sets. To reduce intra-class variance, the distance between the anchor’s nearest positive neighbor and furthest positive sample is penalized. Integrating SN loss on top of Resnet50, superior re-ID results to the state-of-the-art ones are obtained on several widely used datasets. …

Concept Drift In predictive analytics and machine learning, the concept drift means that the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes. The term concept refers to the quantity to be predicted. More generally, it can also refer to other phenomena of interest besides the target concept, such as an input, but, in the context of concept drift, the term commonly refers to the target variable. …

Generative Ensemble Deep generative models are capable of learning probability distributions over large, high-dimensional datasets such as images, video and natural language. Generative models trained on samples from $p(x)$ ought to assign low likelihoods to out-of-distribution (OoD) samples from $q(x)$, making them suitable for anomaly detection applications. We show that in practice, likelihood models are themselves susceptible to OoD errors, and even assign large likelihoods to images from other natural datasets. To mitigate these issues, we propose Generative Ensembles, a model-independent technique for OoD detection that combines density-based anomaly detection with uncertainty estimation. Our method outperforms ODIN and VIB baselines on image datasets, and achieves comparable performance to a classification model on the Kaggle Credit Fraud dataset. …

Like this:

Like Loading…

Related