If you did not already know

Speech2Vec In this paper, we propose a novel deep neural network architecture, Speech2Vec, for learning fixed-length vector representations of audio segments excised from a speech corpus, where the vectors contain semantic information pertaining to the underlying spoken words, and are close to other vectors in the embedding space if their corresponding underlying spoken words are semantically similar. The proposed model can be viewed as a speech version of Word2Vec. Its design is based on a RNN Encoder-Decoder framework, and borrows the methodology of skipgrams or continuous bag-of-words for training. Learning word embeddings directly from speech enables Speech2Vec to make use of the semantic information carried by speech that does not exist in plain text. The learned word embeddings are evaluated and analyzed on 13 widely used word similarity benchmarks, and outperform word embeddings learned by Word2Vec from the transcriptions. …

Additive Polynomial Design Matrix (AP) An implementation of the additive polynomial (AP) design matrix. It constructs and appends an AP design matrix to a data frame for use with longitudinal data subject to seasonality. …

Echo State Network (ESN) The echo state network (ESN), is a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned. The weights of output neurons can be learned so that the network can (re)produce specific temporal patterns. The main interest of this network is that although its behaviour is non-linear, the only weights that are modified during training are for the synapses that connect the hidden neurons to output neurons. Thus, the error function is quadratic with respect to the parameter vector and can be differentiated easily to a linear system. Alternatively, one may consider a nonparametric Bayesian formulation of the output layer, under which: (i) a prior distribution is imposed over the output weights; and (ii) the output weights are marginalized out in the context of prediction generation, given the training data. This idea has been demonstrated in by using Gaussian priors, whereby a Gaussian process model with ESN-driven kernel function is obtained. Such a solution was shown to outperform ESNs with trainable (finite) sets of weights in several benchmarks. Deep Echo State Networks for Diagnosis of Parkinson’s Disease …

Like this:

Like Loading…

Related