Risk-Averse Imitation Learning (RAIL) Imitation learning algorithms learn viable policies by imitating an expert’s behavior when reward signals are not available. Generative Adversarial Imitation Learning (GAIL) is a state-of-the-art algorithm for learning policies when the expert’s behavior is available as a fixed set of trajectories. We evaluate in terms of the expert’s cost function and observe that the distribution of trajectory-costs is often more heavy-tailed for GAIL-agents than the expert at a number of benchmark continuous-control tasks. Thus, high-cost trajectories, corresponding to tail-end events of catastrophic failure, are more likely to be encountered by the GAIL-agents than the expert. This makes the reliability of GAIL-agents questionable when it comes to deployment in safety-critical applications like robotic surgery and autonomous driving. In this work, we aim to minimize the occurrence of tail-end events by minimizing tail-risk within the GAIL framework. We quantify tail-risk by the Conditional-Value-at-Risk (CVaR) of trajectories and develop the Risk-Averse Imitation Learning (RAIL) algorithm. We observe that the policies learned with RAIL show lower tail-end risk than those of vanilla GAIL. Thus the proposed RAIL algorithm appears as a potent alternative to GAIL for improved reliability in safety-critical applications. …
Pairwise Issue Expansion A public decision-making problem consists of a set of issues, each with multiple possible alternatives, and a set of competing agents, each with a preferred alternative for each issue. We study adaptations of market economies to this setting, focusing on binary issues. Issues have prices, and each agent is endowed with artificial currency that she can use to purchase probability for her preferred alternatives (we allow randomized outcomes). We first show that when each issue has a single price that is common to all agents, market equilibria can be arbitrarily bad. This negative result motivates a different approach. We present a novel technique called ‘pairwise issue expansion’, which transforms any public decision-making instance into an equivalent Fisher market, the simplest type of private goods market. This is done by expanding each issue into many goods: one for each pair of agents who disagree on that issue. We show that the equilibrium prices in the constructed Fisher market yield a ‘pairwise pricing equilibrium’ in the original public decision-making problem which maximizes Nash welfare. More broadly, pairwise issue expansion uncovers a powerful connection between the public decision-making and private goods settings; this immediately yields several interesting results about public decisions markets, and furthers the hope that we will be able to find a simple iterative voting protocol that leads to near-optimum decisions. …
PyData PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. We aim to be an accessible, community-driven conference, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. …
Like this:
Like Loading…
Related