If you did not already know

Quasi-KL Divergence (QKL) Dropout, a stochastic regularisation technique for training of neural networks, has recently been reinterpreted as a specific type of approximate inference algorithm for Bayesian neural networks. The main contribution of the reinterpretation is in providing a theoretical framework useful for analysing and extending the algorithm. We show that the proposed framework suffers from several issues; from undefined or pathological behaviour of the true posterior related to use of improper priors, to an ill-defined variational objective due to singularity of the approximating distribution relative to the true posterior. Our analysis of the improper log uniform prior used in variational Gaussian dropout suggests the pathologies are generally irredeemable, and that the algorithm still works only because the variational formulation annuls some of the pathologies. To address the singularity issue, we proffer Quasi-KL (QKL) divergence, a new approximate inference objective for approximation of high-dimensional distributions. We show that motivations for variational Bernoulli dropout based on discretisation and noise have QKL as a limit. Properties of QKL are studied both theoretically and on a simple practical example which shows that the QKL-optimal approximation of a full rank Gaussian with a degenerate one naturally leads to the Principal Component Analysis solution. …

Geometric Operator Convolutional Neural Network (GO-CNN) The Convolutional Neural Network (CNN) has been successfully applied in many fields during recent decades; however it lacks the ability to utilize prior domain knowledge when dealing with many realistic problems. We present a framework called Geometric Operator Convolutional Neural Network (GO-CNN) that uses domain knowledge, wherein the kernel of the first convolutional layer is replaced with a kernel generated by a geometric operator function. This framework integrates many conventional geometric operators, which allows it to adapt to a diverse range of problems. Under certain conditions, we theoretically analyze the convergence and the bound of the generalization errors between GO-CNNs and common CNNs. Although the geometric operator convolution kernels have fewer trainable parameters than common convolution kernels, the experimental results indicate that GO-CNN performs more accurately than common CNN on CIFAR-10/100. Furthermore, GO-CNN reduces dependence on the amount of training examples and enhances adversarial stability. In the practical task of medically diagnosing bone fractures, GO-CNN obtains 3% improvement in terms of the recall. …

QMiner QMiner is a data analytics platform for processing large-scale real-time streams containing structured and unstructured data. …

Like this:

Like Loading…

Related