Unsupervised Semantic Deep Hashing (USDH) In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for large-scale image retrieval. Our method, namely unsupervised semantic deep hashing (\textbf{USDH}), uses semantic information preserved in the CNN feature layer to guide the training of network. We enforce four criteria on hashing codes learning based on VGG-19 model: 1) preserving relevant information of feature space in hashing space; 2) minimizing quantization loss between binary-like codes and hashing codes; 3) improving the usage of each bit in hashing codes by using maximum information entropy, and 4) invariant to image rotation. Extensive experiments on CIFAR-10, NUSWIDE have demonstrated that \textbf{USDH} outperforms several state-of-the-art unsupervised hashing methods for image retrieval. We also conduct experiments on Oxford 17 datasets for fine-grained classification to verify its efficiency for other computer vision tasks. …
Cascade R-CNN In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://…/cascade-rcnn. …
Compact Trip Representation (CTR) We present a new Compact Trip Representation (CTR) that allows us to manage users’ trips (moving objects) over networks. These could be public transportation networks (buses, subway, trains, and so on) where nodes are stations or stops, or road networks where nodes are intersections. CTR represents the sequences of nodes and time instants in users’ trips. The spatial component is handled with a data structure based on the well-known Compressed Suffix Array (CSA), which provides both a compact representation and interesting indexing capabilities. We also represent the temporal component of the trips, that is, the time instants when users visit nodes in their trips. We create a sequence with these time instants, which are then self-indexed with a balanced Wavelet Matrix (WM). This gives us the ability to solve range-interval queries efficiently. We show how CTR can solve relevant spatial and spatio-temporal queries over large sets of trajectories. Finally, we also provide experimental results to show the space requirements and query efficiency of CTR. …
Like this:
Like Loading…
Related