If you did not already know

Deep Collaborative Weight-Based Classification (DeepCWC) One of the biggest problems in deep learning is its difficulty to retain consistent robustness when transferring the model trained on one dataset to another dataset. To conquer the problem, deep transfer learning was implemented to execute various vision tasks by using a pre-trained deep model in a diverse dataset. However, the robustness was often far from state-of-the-art. We propose a collaborative weight-based classification method for deep transfer learning (DeepCWC). The method performs the L2-norm based collaborative representation on the original images, as well as the deep features extracted by pre-trained deep models. Two distance vectors will be obtained based on the two representation coefficients, and then fused together via the collaborative weight. The two feature sets show a complementary character, and the original images provide information compensating the missed part in the transferred deep model. A series of experiments conducted on both small and large vision datasets demonstrated the robustness of the proposed DeepCWC in both face recognition and object recognition tasks. …

EXPected Similarity Estimation (EXPoSE) We present a novel algorithm for anomaly detection on very large datasets and data streams. The method, named EXPected Similarity Estimation (EXPoSE), is kernel-based and able to efficiently compute the similarity between new data points and the distribution of regular data. The estimator is formulated as an inner product with a reproducing kernel Hilbert space embedding and makes no assumption about the type or shape of the underlying data distribution. We show that offline (batch) learning with EXPoSE can be done in linear time and online (incremental) learning takes constant time per instance and model update. Furthermore, EXPoSE can make predictions in constant time, while it requires only constant memory. In addition we propose different methodologies for concept drift adaptation on evolving data streams. On several real datasets we demonstrate that our approach can compete with state of the art algorithms for anomaly detection while being significant faster than techniques with the same discriminant power. …

Random Vector Functional Link Network (RVFL+) In school, a teacher plays an important role in various classroom teaching patterns. Likewise to this human learning activity, the learning using privileged information (LUPI) paradigm provides additional information generated by the teacher to ‘teach’ learning algorithms during the training stage. Therefore, this novel learning paradigm is a typical Teacher-Student Interaction mechanism. This paper is the first to present a random vector functional link network based on the LUPI paradigm, called RVFL+. Rather than simply combining two existing approaches, the newly-derived RVFL+ fills the gap between neural networks and the LUPI paradigm, which offers an alternative way to train RVFL networks. Moreover, the proposed RVFL+ can perform in conjunction with the kernel trick for highly complicated nonlinear feature learning, which is termed KRVFL+. Furthermore, the statistical property of the proposed RVFL+ is investigated, and we derive a sharp and high-quality generalization error bound based on the Rademacher complexity. Competitive experimental results on 14 real-world datasets illustrate the great effectiveness and efficiency of the novel RVFL+ and KRVFL+, which can achieve better generalization performance than state-of-the-art algorithms. …

Like this:

Like Loading…

Related