If you did not already know

Full Reference Image Quality Assessment (FR-IQA) While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called ‘perceptual losses’? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations. …

Substationarity Substationarity is a new concept, which has never been studied in the literature. It means that the distribution can only be invariant under location shifts within a linear subspace of the domain. Theoretically, substationarity is a concept between stationarity and nonstationarity, but it belongs to nonstationarity. …

K-Means Batch Bayesian Optimization (KMBBO) We present K-Means Batch Bayesian Optimization (KMBBO), a novel batch sampling algorithm for Bayesian Optimization (BO). KMBBO uses unsupervised learning to efficiently estimate peaks of the model acquisition function. We show in empirical experiments that our method outperforms the current state-of-the-art batch allocation algorithms on a variety of test problems including tuning of algorithm hyper-parameters and a challenging drug discovery problem. In order to accommodate the real-world problem of high dimensional data, we propose a modification to KMBBO by combining it with compressed sensing to project the optimization into a lower dimensional subspace. We demonstrate empirically that this 2-step method is competitive with algorithms where no dimensionality reduction has taken place. …

Like this:

Like Loading…

Related