Geometry-Aware Generative Adversarial Network (GAGAN) Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, apart from the visual texture, the visual appearance of objects is significantly affected by their shape geometry, information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generative Adversarial Network (GAGAN) for incorporating geometric information into the image generation process. Specifically, in GAGAN the generator samples latent variables from the probability space of a statistical shape model. By mapping the output of the generator to a canonical coordinate frame through a differentiable geometric transformation, we enforce the geometry of the objects and add an implicit connection from the prior to the generated object. Experimental results on face generation indicate that the GAGAN can generate realistic images of faces with arbitrary facial attributes such as facial expression, pose, and morphology, that are of better quality compared to current GAN-based methods. Finally, our method can be easily incorporated into and improve the quality of the images generated by any existing GAN architecture. …
Information Potential Auto-Encoders In this paper, we suggest a framework to make use of mutual information as a regularization criterion to train Auto-Encoders (AEs). In the proposed framework, AEs are regularized by minimization of the mutual information between input and encoding variables of AEs during the training phase. In order to estimate the entropy of the encoding variables and the mutual information, we propose a non-parametric method. We also give an information theoretic view of Variational AEs (VAEs), which suggests that VAEs can be considered as parametric methods that estimate entropy. Experimental results show that the proposed non-parametric models have more degree of freedom in terms of representation learning of features drawn from complex distributions such as Mixture of Gaussians, compared to methods which estimate entropy using parametric approaches, such as Variational AEs. …
Spotting anomalies with Privileged Information (SPI) We introduce a new unsupervised anomaly detection ensemble called SPI which can harness privileged information – data available only for training examples but not for (future) test examples. Our ideas build on the Learning Using Privileged Information (LUPI) paradigm pioneered by Vapnik et al. [19,17], which we extend to unsupervised learning and in particular to anomaly detection. SPI (for Spotting anomalies with Privileged Information) constructs a number of frames/fragments of knowledge (i.e., density estimates) in the privileged space and transfers them to the anomaly scoring space through ‘imitation’ functions that use only the partial information available for test examples. Our generalization of the LUPI paradigm to unsupervised anomaly detection shepherds the field in several key directions, including (i) domain knowledge-augmented detection using expert annotations as PI, (ii) fast detection using computationally-demanding data as PI, and (iii) early detection using ‘historical future’ data as PI. Through extensive experiments on simulated and real datasets, we show that augmenting privileged information to anomaly detection significantly improves detection performance. We also demonstrate the promise of SPI under all three settings (i-iii); with PI capturing expert knowledge, computationally expensive features, and future data on three real world detection tasks. …
Like this:
Like Loading…
Related